Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 45: 19-29, May 15, 2020. tab, ilus, graf
Article in English | LILACS | ID: biblio-1177401

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs), as post-transcriptional regulators, were thought to function in the inductive property of dermal papilla cells (DPCs) in cashmere goat. Previously, lncRNA-599554 was identified in secondary hair follicle (SHF) of cashmere goat, but its functional significance is unknown. RESULTS: In the present investigation, we verified that lncRNA-599554 had significantly higher expression at the anagen dermal papilla of cashmere goat SHF than that at telogen. Based on overexpression and knockdown techniques, we found that lncRNA-599554 contributes the inductive property of DPCs of cashmere goat, which was assessed by detecting the changes in the expression of several typical indictor genes in DPCs including ET-1, SCF, Versican, ALP, Lef1 and Ptc-1. Based on RNA pull-down assay, we verified that lncRNA-599554 directly interacted with chi-miR-15a-5p. Also, we showed that lncRNA-599554 positively regulated the Wnt3a expression in DPCs but which did not appear to involve its modulating of promoter methylation. Based on the use of Dual-luciferase reporter assays, our data indicated that lncRNA-599554 regulated the Wnt3a expression through chi-miR-15a-5p-mediated post-transcriptional level. CONCLUSIONS: We showed that lncRNA-599554 contributes the inductive property of DPCs in cashmere goat which might be achieved through sponging chi-miR-15b-5p to promote the Wnt3a expression. The results from the present investigation provided a novel insight into the functional mechanism of lncRNA-599554 in the SHF regeneration of cashmere goat along with the formation and growth of cashmere fiber.


Subject(s)
Animals , Hair Follicle/cytology , Hair Follicle/metabolism , Dermis/cytology , Wnt3A Protein/metabolism , RNA, Long Noncoding/metabolism , Biological Assay/methods , Goats , RNA, Long Noncoding/genetics , Luciferases , Methylation
2.
Electron. j. biotechnol ; 41: 37-47, sept. 2019. tab, graf, ilus
Article in English | LILACS | ID: biblio-1087161

ABSTRACT

Background: Circular RNAs, a novel class in the eukaryotic transcriptome, are characterized by the 3' and 5' ends that are covalently joined in a covalently closed loop without free ends. Circular RNAs are considerably stable molecules and act as microRNA sponges with regulatory potential to the protein-coding genes. Results: Eight circular RNAs were found to be significantly upregulated at anagen skin tissue of cashmere goat compared with their counterparts at telogen. Rich and complex regulatory patterns were revealed among the eight upregulated circular RNAs at anagen and related miRNAs with their potential regulatory genes. The potential regulatory genes of eight upregulated circular RNAs at anagen were involved in several pathways related to the main physiological process of hair follicle, such as histone acetylation and axon. For chi_circ_1926, chi_circ_3541, chi_circ_0483, chi_circ_3196, and chi_circ_2092, overall, the relative expression in secondary hair follicle exhibited highly similar trends with their corresponding host genes during the different stages of the hair follicle cycle. However, the expression trends of chi_circ_0100, chi_circ_2829, and chi_circ_1967 were found to diverge from their corresponding host genes during the different stages of the hair follicle cycle. Conclusions: A total of eighteen circular RNAs were identified and characterized from skin tissue of cashmere goat. The eight upregulated circular RNAs at anagen might have significant roles in the secondary hair follicle of cashmere goat. Our results would provide a novel regulatory layer to elucidate the molecular mechanisms underlying the development of secondary hair follicle and the growth of cashmere fiber in cashmere goat.


Subject(s)
Animals , Goats/genetics , Hair Follicle/growth & development , RNA, Circular/genetics , Skin , Gene Expression , Computational Biology , MicroRNAs , Eukaryotic Cells , Gene Regulatory Networks , Transcriptome , RNA, Circular/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL